Mixing time of fractional random walk on finite fields
نویسندگان
چکیده
We study a random walk on Fp defined by Xn+1=1∕Xn+εn+1 if Xn≠0, and Xn+1=εn+1 Xn=0, where εn+1 are independent identically distributed. This can be seen as non-linear analogue of the Chung–Diaconis–Graham process. show that mixing time is order logp, answering question Chatterjee Diaconis.
منابع مشابه
Mixing Time for a Random Walk on Rooted Trees
We define an analog of Plancherel measure for the set of rooted unlabeled trees on n vertices, and a Markov chain which has this measure as its stationary distribution. Using the combinatorics of commutation relations, we show that order n2 steps are necessary and suffice for convergence to the stationary distribution.
متن کاملUniform Mixing Time for Random Walk on Lamplighter Graphs
Suppose that G is a finite, connected graph and X is a lazy random walk on G. The lamplighter chain X associated with X is the random walk on the wreath product G = Z2 oG, the graph whose vertices consist of pairs (f, x) where f is a labeling of the vertices of G by elements of Z2 and x is a vertex in G. There is an edge between (f, x) and (g, y) in G if and only if x is adjacent to y in G and ...
متن کاملFractional-time random walk subdiffusion and anomalous transport with finite mean residence times: faster, not slower.
Continuous time random walk (CTRW) subdiffusion along with the associated fractional Fokker-Planck equation (FFPE) is traditionally based on the premise of random clock with divergent mean period. This work considers an alternative CTRW and FFPE description which is featured by finite mean residence times (MRTs) in any spatial domain of finite size. Transient subdiffusive transport can occur on...
متن کاملContinuous time random walk and parametric subordination in fractional diffusion
The well-scaled transition to the diffusion limit in the framework of the theory of continuous-time random walk (CTRW) is presented starting from its representation as an infinite series that points out the subordinated character of the CTRW itself. We treat the CTRW as a combination of a random walk on the axis of physical time with a random walk in space, both walks happening in discrete oper...
متن کاملThe Mixing Time for a Random Walk on the Symmetric Group Generated by Random Involutions
The involution walk is a random walk on the symmetric group generated by involutions with a number of 2cycles sampled from the binomial distribution with parameter p. This is a parallelization of the lazy transposition walk on the symmetric group. The involution walk is shown in this paper to mix for 1 2 ≤ p ≤ 1 fixed, n sufficiently large in between log1/p(n) steps and log2/(1+p)(n) steps. The...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electronic Journal of Probability
سال: 2022
ISSN: ['1083-6489']
DOI: https://doi.org/10.1214/22-ejp858